【一】、液压系统控制结构特点
现有提升设备系列产品为全液压传动与控制结构,其液压系统的组成、工作原理基本相同,其中核心部分是液压驱动系统。
液压驱动系统是大功率时变负载与黏度的液压系统。变量泵控制定量马达的液压回路具有结构简单、工作、恒转矩输出等特点,这类变量系统输出的流量能跟随输入信号—减压式比例阀阀芯位移作连续比例变化。在液压提升设备工作过程中,司机操作减压式比例控制阀,向变量控制系统的比例液压缸输入一逐渐变化的压力油,比例液压缸位移控制伺服阀阀芯位移,伺服阀又通过差动液压缸控制摆动缸体改变变量泵的斜盘倾角,使输入液压马达的液压油流量逐渐变化,从而控制液压马达的旋转速度,实现提升容器的加速起动与减速运行,在恒速升降与低速爬行阶段,司机保持操作手柄不动,从而完成一个提升循环。
液压驱动系统为变量液压泵直接反馈排量调节变量控制结构,和开环加简单的手动操作比例式减压阀控制方式,该控制方式中液压泵输出流量容易受负载的影响而不稳定,液压泵的容积效率随系统工作压力的高低及液压油黏度的变化而变化,使液压泵的输出流量受负载及油温的影响,由于液压油的可压缩性、管道的弹性、液压元件的泄漏等因素的影响,加之系统又没有设置马达输出速度检测与反馈控制回路,系统不能自动负载变化等多种因素引起的液压马达输出速度误差,因此现有液压驱动系统的速度控制精度较低,影响到了液压顶升设备的性,不能达到现代液压提升设备的控制和乘坐舒适性等性能要求。
因此,液压驱动系统控制方案实现液压提升设备的计算机控制以其综合性能显得迫切,提高系统的速度刚性、缩短负载扰动调节时间、保持系统工作效率的大功率、大惯量负载泵控马达伺服系统的控制方案来提升液压提升设备性能。
【二】、连续梁桥顶升施工过程控制
对于多跨连续梁桥,可以实现多跨同步顶升和比例顶升。顶升方式有两种:直接顶升梁体的加高垫石顶升和截柱顶升。对于液压顶升装置施工中重要的受力结构,如钢牛腿、钢抱箍、钢支撑、限位装置等经过严谨的计算分析,并经现场力学性能试验后才能正式使用。桥梁顶升施工风险,在正式顶升施工前进行重大危险源识别,并进行施工风险评估,在施工过程中对危险源实行动态控制。在顶升施工过程中,建立三方监测体系,对梁体关键部位的应力,梁体的偏位和顶升高度进行实时监测。
1、关键部位的应力监测
在顶升过程中,对每一跨梁体的应力进行监测,监测关键截面有墩顶、1/4截面、3/4截面、跨中截面。需要监测的部位还包括下抱箍底部的立柱砼表面,盖梁侧面。监测这些截面的应力变化,防止出现较快的拉应力或压应力变化,在梁体出现拉应力时应报警。
2、梁体偏位监测
顶升过程中忌梁体发生纵向和横向位移,因此建立一个测量控制网,监测梁体的纵、横向偏位情况。根据施工需要,每顶升一个阶段,监测一次。梁体的纵向、横向偏位均控制在10mm以内。
3、顶升高度监测
桥梁顶升施工的质量很大程度是通过控制顶升高度的精度来体现。虽同步液压提升设备控制系统能将顶升高度的精度控制在1mm以内,但通过桥面标高的测量来校核,并以实测顶升高度指导顶升施工。顶升高度控制指标:(1)桥面上每个桥墩处横向布置4个标高测点,每一次顶升时,这4个点的顶升高度差值超过1mm时,测量人员向顶升施工总指挥报警,并及时作出调整。(2)每个桥墩处梁体的实测顶升高度与设计顶升高度差值控制在+5mm以内。